Contar con bibliografía y
softwares libres (Web), es de vital importancia, por lo cual, les compartimos
los siguientes links.
https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/matchmaker/matchmaker.html
https://www.cgl.ucsf.edu/chimera/
https://www.cgl.ucsf.edu/chimera/pdf/UsersGuide1.10.pdf
https://pymol.org/2/
http://pymol.sourceforge.net/newman/userman.pdf
http://www.pitt.edu/~epolinko/IntroPyMOL.pdf
https://www.rcsb.org/
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
https://www.cell.com/action/showPdf?pii=S0969-2126%2821%2900126-X
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/docs/help
https://swissmodel.expasy.org/course
http://www.hiv.lanl.gov/content/sequence/
FORMAT_CONVERSION/form.html
https://www.benchling.com/
www.ncbi.nlm.nih.gov.
https://benchling.com/
https://www.idtdna.com/calc/analyzer.
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi,
Cañedo Andalia, Rubén,
Rodríguez Labrada, Roberto, & Vázquez Mojena, Yaimeé. (2009). Centro
Nacional para la Información Biotecnológica de los Estados Unidos: un palacio
de la información para la medicina molecular. ACIMED, 19(4) http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024
94352009000400003&lng=es&tlng=es.
Sayers EW, Cavanaugh M, Clark
K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019 Jan
8;47(D1):D94-D99. doi: 10.1093/nar/gky989. PMID: 30365038; PMCID: PMC6323954.
Sayers, E. W., Beck, J.,
Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., Comeau, D. C., Funk,
K., Kim, S., Klimke, W., Marchler-Bauer, A., Landrum, M., Lathrop, S., Lu, Z.,
Madden, T. L., O'Leary, N., Phan, L., Rangwala, S. H., Schneider, V. A.,
Skripchenko, Y., … Sherry, S. T. (2021). Database resources of the National
Center for Biotechnology Information. Nucleic acids research, 49(D1), D10–D17.
https://doi.org/10.1093/nar/gkaa892
Wassmann, P., Chan, C., Paul,
R., Beck, A., Heerklotz, H., Jenal, U., SchirmeT. Structure of Bef3--Modified
Response Regulator Pled: Implications for Diguanylate Cyclase Activation,
Catalysis, and Feedback Inhibition. Structure volume15, ISSUE 8, P915-927,
august 14, 2007 DOI: https://doi.org/10.1016/j.str.2007.06.016
Protein Data Bank. Nat. New
Biol.1971; 233:223.
BermanH., Henrick K., Nakamura
H. Announcing the worldwide Protein Data Bank. Nat. Struc. Niol.
2003;10:980-980.
Berman H.M.,Westbook J.,
FengZ., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The
protein Data Bank. Nucleic Acids Res. 2000; 28:235-242.
Mir S., Alhroub Y., Anyango S., Armstrong D.R., Berrisford J.M., Clark
A.R., Conroy M.J., Dana J.M.,
Deshpande M., Gupta D. et al.
PDBe: towards reusable data delivery infrastructure at protein data bank
in Europe. Nucleic Acids Res. 2017;
46:D486–D492.
Kinjo A.R., Bekker G.-J.,
Suzuki H., Tsuchiya Y., Kawabata
T., IkegawaY., Nakamura H. Protein Data
Bank Japan (PDBj): updated user interfaces, resource description framework,
analysis tools for large structures. Nucleic Acids Res. 2017; 45:D282–D288.
NIH. (2019). Secuenciación del
ADN. National Human Genome Research Institute. Recuperado de
www.genome.gov/es/about-genomics/fact-sheets/Secuenciacion-del-ADN.
Marquez V. L. M. (s/f).
Secuenciación de fragmentos de ADN. Herramientas Moleculares Aplicadas en
Ecología.
NIH. (2019). SnapGene.
Recuperado de ostr.ccr.cancer.gov/bioinformatics/software/snapgene/.
De Castro E, Sigrist CJA,
Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N
(2006). "ScanProsite: detección de coincidencias de firma PROSITE y
residuos estructurales y funcionales asociados a ProRule en proteínas".
Ácidos nucleicos Res. 34 (Problema del servidor web): W362–365. doi: 10.1093 /
nar / gkl124. PMC 1538847. PMID 16845026.
Hulo N, Bairoch A, Bulliard V, Cerutti L,
Cuche B, De Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2007).
"Los 20 años de PROSITE". Ácidos nucleicos Res. 36 (Problema de la
base de datos): D245–9. doi: 10.1093 / nar / gkm977. PMC 2238851. PMID
18003654.
Sigrist CJ, De Castro E,
Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N (2005). "ProRule: una
nueva base de datos que contiene información funcional y estructural de los
perfiles de PROSITE". Bioinformática. 21 (21): 4060–4066. doi: 10.1093 /
bioinformatics / bti614. PMID 16091411.
Sievers, F., Wilm, A., Dineen,
D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M.,
Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable
generation of high-quality protein multiple sequence alignments using Clustal
Omega. Molecular Systems Biology, 7(539). https://doi.org/10.1038/msb.2011.75
Gold, L., Polisky, B.,
Uhlenbeck, O., & Yarus, M. (1995). Diversity of oligonucleotide functions.
Annual review of biochemistry, 64(1), 763-797.
SnapGene software (from
Insightful Science; available at snapgene.com)
Hung, J. H., & Weng, Z.
(2016). Designing polymerase chain reaction primers using Primer3Plus. Cold
Spring Harbor Protocols, 2016(9), pdb-prot093096.
Bickle, T. A., & Kruger,
D. H. (1993). Biology of DNA restriction. Microbiological Reviews, 57(2),
434–450. https://doi.org/10.1128/mmbr.57.2.434-450.1993
Boyer, H. W. (1971). DNA
Restriction and Modification Mechanisms in Bacteria. Annual Review of
Microbiology, 25(1), 153–176.
https://doi.org/10.1146/annurev.mi.25.100171.001101
Lodish, H. F. (2016).
Molecular cell biology. New York: W.H. Freeman and Co.
Roberts, R. J. (2005). How
restriction enzymes became the workhorses of molecular biology.
www.pnas.orgcgidoi10.1073pnas.0500923102
Yuan, R. (1981). Structure and
Mechanism of Multifunctional Restriction Endonucleases. Annual Review of
Biochemistry, 50(1), 285–315.
https://doi.org/10.1146/annurev.bi.50.070181.001441
Ye, J., Coulouris, G.,
Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012).
Primer-BLAST: a tool to design target-specific primers for polymerase chain
reaction. BMC bioinformatics, 13(1), 1-11.
Dieffenbach, C. W., Lowe, T.
M., & Dveksler, G. S. (1993). General concepts for PCR primer design. PCR
methods appl, 3(3), S30-S37.
Koressaar, T., & Remm, M.
(2007). Enhancements and modifications of primer design program Primer3.
Bioinformatics, 23(10), 1289-1291.
Singh, V. K., & Kumar, A.
(2001). PCR primer design. Mol. Biol. Today, 2(2), 27-32.
Singh, V. K., Govindarajan,
R., Naik, S., & Kumar, A. (2000). The effect of hairpin structure on PCR
amplification efficiency. Mol Biol Today, 1(3), 67-69.
Gold, L., Polisky, B.,
Uhlenbeck, O., & Yarus, M. (1995). Diversity of oligonucleotide functions.
Annual review of biochemistry, 64(1), 763-797
SnapGene software (from
Insightful Science; available at snapgene.com)
Dieffenbach, C. W., Lowe, T.
M., & Dveksler, G. S. (1993). General concepts for PCR primer design. PCR
methods appl, 3(3), S30-S37.
Singh, V. K., & Kumar, A.
(2001). PCR primer design. Mol. Biol. Today, 2(2), 27-32.
González-Ballester, D., De
Montaigu, A., Galván, A., & Fernández, E. (2005). Restriction enzyme
site-directed amplification PCR: a tool to identify regions flanking a marker
DNA. Analytical biochemistry, 340(2), 330-335.
Lodish, H., Berk, A., Kaiser,
C. A., Monty, K., Scott, M. P., Bretscher, A., Ploegh, H., & Matsudaira, P.
(2008). Molecular cell biology. In General Pharmacology:The Vascular System
(Vol. 18, Issue 6, p. 672). https://doi.org/10.1016/0306-3623(87)90055-3
Can Kesmir. (2013).
Bioinformatics. UU: Utrecht University
Gale Rhodes. (2009).
Bioinformática y modelación de proteínas por homología: un tutorial para
principiantes Exploración de los pigmentos visuales humanos. México: UNAM.
Engelhardt, B. E., Jordan, M.
I., Repo, S. T., & Brenner, S. E. (2009). Phylogenetic molecular function
annotation. Journal of Physics: Conference Series, 180(1), 1–7.
https://doi.org/10.1088/1742-6596/180/1/012024
Semagn, K. (2014). Leaf Tissue
Sampling and DNA Extraction Protocols. In: Molecular Plant Taxonomy Methods and
Protocols. In Molecular Plant Taxonomy: Methods and Protocols (Vol. 1115).
Weiß, M., & Göker, M.
(2011). Molecular phylogenetic reconstruction. The Yeasts, 1, 159–174.
https://doi.org/10.1016/B978-0-444-52149-1.00012-4
Gale Rhodes. (2009).
Bioinformática y modelación de proteínas por homología: un tutorial para
principiantes Exploración de los pigmentos visuales humanos. México: UNAM.
Daniel H. Huson, Regula Rupp,
Celine Scornavacca. (2011). Phylogenetic Nettworks. Concepts, Algorithms and
Applications 2nd ed. Cambridge. University Press. New York
SMART: recent updates, new developments and
status in 2020, Nucleic Acids Res 2020; doi:10.1093/nar/gkaa937
SMART, a simple modular
architecture research tool: Identification of signaling domains.PNAS 1998; 95:
5857-5864
Marchler-Bauer A et al.
(2015), "CDD: NCBI's conserved domain database.", Nucleic Acids
Res.43(D)222-6.
Marchler-Bauer A et al.
(2011), "CDD: a Conserved Domain Database for the functional annotation of
proteins.", Nucleic Acids Res.39(D)225-9.
Marchler-Bauer A, Bryant SH
(2004), "CD-Search: protein domain annotations on the fly.", Nucleic
Acids Res.32(W)327-331.
SMART: recent updates, new
developments and status in 2020, Nucleic Acids Res 2020;
doi:10.1093/nar/gkaa937
Marchler-Bauer A et al.
(2017), "CDD/SPARCLE: functional classification of proteins via subfamily
domain architectures.", Nucleic Acids Res.45(D)200-3.
Gupta R, Brunak S. Prediction
of glycosylation across the human proteome and the correlation to protein
function. Pac Symp Biocomput. 2002; 310-22.PMID: 11928486y
Pan, Z., Wang, B., Zhang, Y.,
Wang, Y., Ullah, S., Jian, R., Liu, Z., & Xue, Y. (2015). dbPSP: a curated
database for protein phosphorylation sites in prokaryotes. Database : the
journal of biological databases and curation, 2015, bav031.
https://doi.org/10.1093/database/bav031
Precision mapping of the human
O-GalNAc glycoproteome through SimpleCell technology. Steentoft C, Vakhrushev
SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K,
Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U,
Brunak S, Wandall HH, Levery SB, Clausen H. EMBO J, 32(10):1478-88, May 15,
2013. (doi: 10.1038/emboj.2013.79. Epub 2013 Apr 12.
Sequence- and structure-based
prediction of eukaryotic protein phosphorylation sites. Blom, N., Gammeltoft,
S., and Brunak, S. Journal of Molecular Biology: 294(5): 1351-1362, 1999.
Prediction of
post-translational glycosylation and phosphorylation of proteins from the amino
acid sequence. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S.
Proteomics: Jun;4(6):1633-49, review 2004.
Mackenzie CO, Grigoryan G.
2017. Protein Structural Motifs in Prediction and Design. Curr Opin Struct Biol
44:161–167.
H.M. Berman, J. Westbrook, Z.
Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne .2000.
The Protein Data Bank. Nucleic Acids
Research, 28: 235-242. doi:10.1093/nar/28.1.235
Pettersen EF, Goddard TD,
Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera
visualization system for exploratory research and analysis. J Comput Chem
25:1605–1612.
The PyMOL Molecular Graphics
System, Version 1.2r3pre, Schrödinger, LLC.
Meng EC, Pettersen EF, Couch
GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with
UCSF Chimera. BMC Bioinformatics. 2006 Jul 12;7:339. doi:
10.1186/1471-2105-7-339. PMID: 16836757; PMCID: PMC157015
Análisis de secuencias de biológicas por medio de plataformas digitales.
Todo el contenido es tuyo y está disponible sin costo para ti.
Gracias por compartirlo.
Recuerda somos:
https://analisisdesecuenciasdednayprot.blogspot.com/
No hay comentarios:
Publicar un comentario